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Abstract 

Foraging is a natural behavior that involves making sequential decisions to maximize rewards 

while minimizing the costs incurred when doing so. The prevalence of foraging across 

species suggests that a common brain computation underlies its implementation. Although 

anterior cingulate cortex is believed to contribute to foraging behavior, its specific role has 

been contentious, with predominant theories arguing either that it encodes environmental 

value or choice difficulty. Additionally, recent attempts to characterize foraging have taken 

place within the reinforcement learning framework, with increasingly complex models 
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scaling with task complexity. Here we review reinforcement learning foraging models, 

highlighting the hierarchical structure of many foraging problems. We extend this literature 

by proposing that ACC guides foraging according to principles of model-based hierarchical 

reinforcement learning. This idea holds that ACC function is organized hierarchically along a 

rostral-caudal gradient, with rostral structures monitoring the status and completion of high-

level task goals (like finding food), and midcingulate structures overseeing the execution of 

task options (subgoals, like harvesting fruit) and lower-level actions (such as grabbing an 

apple). 

 

Keywords: foraging, anterior cingulate cortex, ACC, hierarchical reinforcement learning, 

sequential decision making 

 

Introduction 

Real-world decisions often involve selecting a single choice from a clearly defined set of 

options, such as choosing an item from a menu. This type of choice has been the mainstay of 

laboratory studies of decision making for decades, but many everyday behaviors entail making 

sequential or continuous decisions, such as whether or not to continue watching the same TV 

show, or whether to accept or reject a series of job offers. Interest in this type of problem—

when to accept, reject, and persist at extended behaviors—dates to the 1960’s, when 

researchers in behavioral ecology and ethology applied insights from economics to explain 

how animals forage for resources in their environment (Stephens et al., 2007). Foraging 

constitutes an interesting research problem because it is common to most species and, in 

contrast to tasks that are typically conducted in the laboratory, involves naturalistic behaviors 

that sometimes require strong problem solving skills. The subject therefore appeals to 

researchers in disciplines beyond ecology, including evolution (Cisek, 2019), anthropology 
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(Smith et al., 1983), psychiatry (Addicott et al., 2017; Barack & Platt, 2017), social 

neuroscience (Contreras-Huerta et al., 2022; Gabay & Apps, 2021), marketing (Wells et al., 

2023), logistics (O’Fallon et al., 2023), computer science (J. Wu & Aberer, 2003), artificial 

intelligence (Rathore et al., 2022), robotics (Winfield, 2009), behavioral psychology (Kamil, 

1983; Pitkow & Angelaki, 2017) and cognitive neuroscience (Hayden & Walton, 2014). 

Foraging occurs in natural environments, which tend to be highly complex. Resources are often 

sparsely clustered in sub-sections of the environment called “patches” (Charnov, 1976) that 

can vary in richness and effort demands. Animals often encounter patches that they never 

previously visited, which they can then exploit before moving on to other patches. Hence, the 

animals are confronted with a series of travel-harvest-decide (i.e., stay or leave) sequences of 

behavior (Stephens & Krebs, 1986). They must navigate these decisions with the twin goals of 

maximizing profit (such as food or money) and minimizing costs (including time, resources, 

effort, and energy) based on their history of rewards earned and costs incurred (Zhang et al., 

2015).  

Moreover, the problem is made even harder when the sources of reward deplete, when 

travelling between patches exacts a high cost (in terms of energy expenditure, time delays, 

etc.), and when the rewards are known only after being harvested. Although precise 

information about the foraging environment—such as the patches’ reward distributions, decay 

rates, the overall richness of the environment, and so on—could significantly facilitate these 

decisions, such information is rarely available to the forager in real-world scenarios. Hence, 

foragers typically infer this information by interacting with the environment itself. In that sense, 

they face a significant challenge: the foragers must actively learn properties of their 

environment in order to determine the optimal balance between when to exploit a patch versus 

when to explore for alternatives (the exploration/exploitation dilemma) (March, 1991; Radner 

& Rothschild, 1975; Sutton & Barto, 2018). These complexities make foraging a challenging 
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problem both for animals to solve and for researchers to understand. Note that, by design, 

foraging tasks studied in the laboratory are often much simpler and lack many of the 

characteristics of their counterparts in the wild. For example, animals are sometimes required 

to choose/switch between two available patches instead of making sequential choices between 

a current patch and the next, unknown patch. As we define the problem here, foraging studies 

involve sequences of choices between exploiting a current source of reward that depletes with 

use vs. switching to an alternative source of reward while incurring a cost because of the switch. 

Although computational approaches related to evidence accumulation and Bayesian inference 

(Davidson & El Hady, 2019; Harhen & Bornstein, 2023; Kane et al., 2022; Kilpatrick et al., 

2021) have elucidated aspects of it, foraging is fundamentally a reinforcement learning (RL) 

problem (Morimoto, 2019). In RL, a decision-making agent (be it a human, animal, or 

computational process) attempts to maximize long-term reward by evaluating the value of the 

current state of the environment and its available actions. The values are typically learned from 

the rewards and costs obtained by repeated interactions with the environment. Choices are then 

dictated by a policy that probabilistically maps the state transitions (Sutton & Barto, 2018). The 

computational power of this framework, together with natural parallels to the neural 

foundations of learning and behavior (Krausz et al., 2023; Schultz, 2013; Schultz et al., 1997), 

have put RL algorithms in the spotlight of the cognitive neuroscience of animal learning and 

decision-making. Crucially, RL principles can be used to model how agents learn new tasks 

from rewards and penalties in the absence of specific task instructions (Kaelbling et al., 1996), 

permitting inspection of the internal variables that drive behaviors such as foraging. 

Further, insight into foraging can be gained by studying its underlying neural mechanisms. 

Notably, neuroimaging and neurophysiology studies have consistently implicated the anterior 

cingulate cortex (ACC) in such behavior (Hayden, Pearson, et al., 2011; Hayden & Walton, 

2014; Kane et al., 2022; Kolling et al., 2012; Shenhav et al., 2014; Wittmann et al., 2016). The 
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ACC is a brain structure that extends along the frontal midline cortex and is believed to be 

involved in cognitive control and decision making, but its specific function is highly debated 

(Holroyd & Verguts, 2021). This controversy extends to ACC’s role in foraging (Ebitz & 

Hayden, 2016), a behavior that ACC could support by way of RL signals communicated there 

from the midbrain dopamine system (Holroyd & Coles, 2002; see also Schultz et al., 1997; 

Schultz & Dickinson, 2000). This possibility is consistent with studies showing that 

pharmacological deactivation of dopamine signals impairs foraging behavior in rodents (F. Li, 

Cao, et al., 2012) and humans (Constantino et al., 2017; Le Heron et al., 2020; Rutledge et al., 

2009), and that markers of dopamine synthesis and availability (as measured by positron 

emission tomography) correlate with patch leaving thresholds (Ianni et al., 2023). 

Here we propose that complex foraging behaviors draw on specialized RL strategies including 

the abilities to plan prospectively and to adapt flexibly to environmental changes. We start by 

reviewing the strengths and weaknesses of current RL-based foraging theories, emphasizing 

how the need to add parameters to simpler models associated with so-called model-free RL 

results in more complex models that have more in common with so-called model-based RL. 

Then, we extend this research by proposing that many animals forage using a computational 

strategy called model-based hierarchical reinforcement learning (MB-HRL). In brief, we 

suggest that animals represent foraging tasks according to a hierarchical organization that 

renders the problem computationally tractable. By grouping contextually-related actions into 

goal-directed sequences, higher levels of the hierarchy are freed to solve complex foraging 

problems without being overwhelmed by details of task execution, which are delegated to the 

lower levels of the hierarchy. Further, model-based representations of the environment enable 

the forager to simulate and update goal-directed plans on-the-fly. We also highlight the ACC 

as an important neural structure orchestrating this mechanism, with hierarchically-higher 

representations implemented in more rostral parts of the ACC. In so doing, we argue that the 
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key contributions of ACC to foraging illuminate the computational underpinnings of foraging 

behavior itself. 

Marginal Value Theorem 

Foraging concerns the choices that animals make when serially encountering patches of 

resources within an environment. Each encounter confronts them with a decision: either to 

harvest from the current patch or to switch to an alternative, potentially better patch in the 

environment (Charnov & Orians, 1973; Stephens & Krebs, 1986). Given a finite amount of 

resources per patch, repeated harvests from the same patch usually results in depletion, which 

compels the forager eventually to search elsewhere. In addition, both the act of harvesting 

rewards as well as travelling to new patches can incur costs in terms of time and energy. 

Therefore, to maximize their returns, foragers must optimize resource expenditure by staying 

in each patch only when doing so remains profitable, and by moving between patches only 

when necessary. The main computational challenge thus becomes to find the optimal moment 

to abandon a patch. Foraging studies have shown that birds, rodents, non-human- and human 

primates, and other species (Freidin & Kacelnik, 2011; Gabay & Apps, 2021; Hayden, Pearson, 

et al., 2011; Kacelnik, 1984; Kane et al., 2017; Wolfe, 2013), as well as plants (McNickle & 

Cahill, 2009) and artificial neural network agents (Wispinski et al., 2023), all make patch-

leaving decisions according to the Marginal Value Theorem (MVT). The MVT holds that the 

optimal moment to abandon a patch is when the reward rate of the current patch drops below 

the current average reward rate across all other patches in the environment (Charnov, 1976; 

Stephens & Krebs, 1986) (Figure 1). 

The success of the MVT over the past decades has established it as the flagship theory of 

foraging research. This suggests that an average reward rate solution for solving decision-

making problems in general (Dayan, 2009; Niv et al., 2007) might also apply to foraging 
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problems in particular. In fact, the MVT has been proven to approach optimality in cases where 

the reward rate of the patches decreases monotonically with repeated harvesting (Kolling & 

Akam, 2017; McNamara & Houston, 1985). In such scenarios, the MVT’s average reward 

threshold rule is seen to explain patch-leaving decisions better than cumulative long-term 

reward rules like temporal difference (TD) learning (see below) (Constantino & Daw, 2015).  

That said, several strong assumptions underlying the MVT framework limit its wider 

applicability to more general foraging problems (Kilpatrick et al., 2020). For example, the 

MVT assumes that reward rates decay monotonically with repeated patch engagement, and 

MVT approaches optimality in scenarios that meet this constraint, but this is unrealistic in some 

natural settings where reward availability is highly volatile. In particular, competing foragers 

can cause the resource to deplete suddenly (Slotow & Coumi, 2000), and patches can yield 

stochastic returns and/or improve over time. The MVT also assumes complete knowledge of 

resource availability on the part of the agent, which is rarely possible in the real world (Pirolli, 

2007). Predators can also block access to the resources (Lima, 1998), and changes in 

environmental conditions can redistribute or eliminate the rewards (Peat & Goulson, 2005). 

The average reward rate also does not provide an accurate estimate of reward value for 

environments with highly uneven and variable sources of reward, as some patches can be richer 

than other patches, and some regions within a patch can be richer than other regions. As a 

result, the MVT fails to explain many real-world foraging problems (Kolling & Akam, 2017; 

Mobbs et al., 2018). Nevertheless, the parsimony of the MVT algorithm together with its ability 

to account for a wide variety of observations has established it as the benchmark in foraging 

research. 

Model-free RL models of foraging. 
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An increasingly popular approach in recent years has been to describe foraging behavior 

according to principles of RL, which overcome some of the limitations of MVT models 

(Kolling & Akam, 2017). The first RL algorithms, which are collectively termed model-free 

(MF) RL, were derived from psychology studies of learning by reinforcement (Ferster & 

Skinner, 1957; Skinner, 1965; Thorndike, 1898). An agent following MF-RL maximizes 

reward by learning what actions to take via a series of trial-and-error interactions with the 

environment. In particular, temporal difference (TD) learning entails comparing whether the 

reward value of ongoing events is better or worse than the agent’s predictions of those events, 

generating a reward prediction error (RPE) when predictions and outcomes disagree. In turn, 

these RPEs are used to update the predictive values of those events, with the objective of 

minimizing the absolute value of the RPE. This is achieved by associating earlier and earlier 

states or actions in a temporal sequence with more accurate predictive values (Sutton & Barto, 

2018). Consequently, an MF-RL agent adaptively adjusts its behavior based on its improved 

predictions.  

This approach highlights an important distinction between standard laboratory bandit task 

experiments, which have been used previously to examine MF-RL, and typical foraging 

problems (Averbeck, 2015). In bandit tasks, an agent must repeatedly select a bandit among a 

set of alternatives, after which a reward is delivered according to a probability specific to that 

bandit. By contrast, foragers often encounter only one patch at a time, and therefore the value 

of the alternative patches remain unknown until the next patch is selected. Further, the switch 

from one patch to another typically incurs a cost (Hayden, 2018). Viewed as a bandit task 

problem, this would translate as a repeated choice between the bandit at hand and the averaged 

return of all other bandits, with a penalty paid when the current bandit is abandoned to choose 

one of the others. Hence, applications of RL principles to foraging problems must incorporate 

an inherent cost associated with exploring alternatives, in addition to any harvesting costs. In 
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particular, an MF-RL foraging agent should estimate both the value of the current offer and the 

average value of the environment based on RPE-driven changes in reward value (Pereira-

Obilinovic et al., 2022), in order to estimate short-term reward values of upcoming harvests to 

guide patch-leaving decisions (Figure 1). 

Constantino and Daw (2015) investigated whether two types of MF-RL algorithms, TD(λ) and 

R-learning, would account for patch-leaving behavior better than the MVT approach. They 

utilized a task that required human participants to harvest fruit from trees in different virtual 

environments. Each harvest incurred a short time delay (a harvest cost), and moving to a new 

tree incurred a longer time delay (a travel cost); systematic variation of the travel costs and 

reward depletion rates across blocks produced environments with differing degrees of richness. 

Importantly, the reward rate for each tree depleted monotonically throughout the experiment 

(i.e., decreased consistently without significant reversals or fluctuations). They observed that 

an MVT-based model better predicted participant patch-leaving decisions than did the other 

models, highlighting the superiority of the average reward rate rule used in MVT relative to a 

long-term discounted cumulative rewards algorithm used in MF-RL, at least for environments 

with patches characterized by monotonically depleting rewards.  

By contrast, the MVT is less accurate for non-deterministic (and more realistic) environments 

that are characterized by non-monotonically changing reward rates. For example, in a task 

where the richness of the environments changed over time, participants learned from positive 

outcomes during periods of patch improvement faster than they did from negative outcomes 

during periods of patch deterioration; this adaptive behavior was better explained by an RL 

model that incorporated separate learning rates for positive and negative outcomes, which does 

not have an equivalent in the standard MVT implementation (Garrett & Daw, 2020). Further, 

MF-RL algorithms that incorporate such a bias—i.e., that differentially weight the different 

outcomes (with beneficial outcomes having greater influence over behavior than non-beneficial 
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outcomes) (Garrett & Daw, 2020)—account better than MVT models for a tendency of foragers 

to remain in a patch for longer than optimal, which has been observed across multiple empirical 

studies (Constantino & Daw, 2015; Harhen et al., 2021; Harhen & Bornstein, 2022; Hutchinson 

et al., 2008; Lenow et al., 2017; Wikenheiser et al., 2013). More generally, this overharvesting 

phenomenon has been related to a range of cognitive, computational, and personality-related 

processes such as temporal perception adjustment (Brunner et al., 1992; Kendall & 

Wikenheiser, 2022), environment uncertainty (Kilpatrick et al., 2021), environment structure 

learning (Harhen & Bornstein, 2023), risk sensitivity (Constantino & Daw, 2015), error 

compensation (Cash-Padgett & Hayden, 2020), and apathy and compulsivity traits (Scholl et 

al., 2022). Considered in this wider context, the prevalence of overharvesting is a salient feature 

of foraging that merits explanation. 

That said, standard MF-RL models struggle to capture many behaviors of real foragers unless 

the models incorporate additional parameters or features. In one study that tested humans in a 

virtual reality foraging environment, an MF-RL model did not accurately simulate their 

observed foraging trajectories between patches in the environment. Only by incorporating prior 

knowledge into the model in the form of initial policy values (which were estimated via 

imitation learning, whereby the artificial agent is trained by imitating example behaviors; 

Pomerleau, 1991) did the model account well for the empirical observations (Giammarino et 

al., 2022). In practice, not only are foraging environments often non-stationary and volatile, 

but actions at any point in time can influence the availability of subsequent choices (Calhoun 

& Hayden, 2015), which render the learning problem more difficult for MF-RL to solve 

(Gershman & Daw, 2017; Sutton & Barto, 2018). 

Moreover, MF-RL models fail to account for several key features of natural foraging behavior, 

such as memory of resource locations (Applegate & Aronov, 2022) and flexible long-term 

planning (Drummond & Niv, 2020) that animals exhibit in natural environments (Fagan et al., 
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2013). Relatedly, MF-RL models cannot predict patch replenishment while the patches are not 

being harvested, which often directs patch (re)visiting of foragers in the real world (Hall-

McMaster & Luyckx, 2019). Animals can also balance the benefits of exploitation and 

exploration by remembering the locations of resources according to their predictability 

(Jackson et al., 2020). In fact, a recent study suggested that mice might arbitrate between 

model-free and model-based behavioral strategies in response to their degree of experience 

with the foraging task (Le et al., 2022). These task demands require the agent to adapt their 

decisions according to the latest outcomes and to integrate detailed information about the 

environment (Shteingart & Loewenstein, 2014). Importantly, this information is not 

incorporated in models that compare the average reward rate across patches to the latest 

received reward (MVT models; Figure 1), nor in models that predict trial-by-trial outcomes 

driven by latest updates in patch reward value (MF-RL models; Figure 1). Thus, despite 

similarities between foraging and the (often simple) RL rules that are commonly studied in 

cognitive psychology, it seems likely that the neurocognitive mechanisms underlying foraging 

benefit from incorporating more complex representations of the environment. 

Model-based RL models of foraging 

In general, adding parameters to relatively simple RL algorithms improves their ability to 

capture important features of behavior but also increases their complexity. In so doing, these 

models tend to progressively resemble model-based RL algorithms that leverage detailed 

statistical structure about environmental relationships. In contrast to MF-RL, model-based 

(MB) RL provides a means for agents to predict the reward value of sequences of decisions 

and direct behavior accordingly. The agent first learns an internal model of the environment 

that maps the probabilities that each state will transition to every other state, and then applies 

this model to simulate the consequences of its decisions (Botvinick & Weinstein, 2014). In this 

way, MB-RL can enable planning over extended sequences of behaviors (Figure 2), which in 
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the case of foraging addresses some of the shortcomings of the RL solutions discussed above. 

In fact, structural knowledge (i.e., a model) of the environment might be a requirement for 

navigating the complex dynamics of naturalistic tasks (Noel et al., 2021). Given that during 

foraging each choice influences subsequent states, and such consequences could be distributed 

over time, a complete description of environmental state transition probabilities would enable 

optimal foraging behavior even in non-stationary environments (Davidson & El Hady, 2019; 

Harhen et al., 2021; Harhen & Bornstein, 2022; Kanarek et al., 2008; McNamara, 1982). 

Consistent with these task demands, a growing body of research suggests that human behavior 

relies, at least in part, on MB-RL (Daw & Dayan, 2014; Gershman & Niv, 2015; Keramati et 

al., 2016; Pouncy et al., 2021; but see Collins & Cockburn, 2020; Momennejad, 2020; Reid & 

Staddon, 1998), though its role in foraging is only recently being examined (Kumar et al., 2019; 

Noel et al., 2021; Yoo et al., 2020).  

MB-RL thus provides a potentially powerful means to address difficult foraging problems. 

However, MB-RL is limited by the computational intractability of learning a complete internal 

model capable of simulating all possible world states, at least for the large and complex 

environments that are typically encountered by foragers in the real world. Instead, agents can 

sometimes learn an approximate internal model of the environment (Song et al., 2016), though 

the complexity of these models still scales with the complexity of the foraging problem (Doll 

et al., 2012). For example, in a study with human participants where the reward value of 

different patches either improved or worsened over time, an RL model that detected trends in 

short- and long-term reward rates explained foraging choices better than a standard MF-RL 

model did (Wittmann et al., 2016). The model learned long-term estimates of RPEs by 

introducing an expected RPE parameter into an RL algorithm. Working in parallel with a 

reward value learning RL algorithm, this feature enabled the model to forecast changing reward 

rates to guide decision-making. The model accounted well for empirically-observed decisions 
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to stay in a patch, which were positively influenced by recent outcomes and negatively 

influenced by outcomes farther in the past. Hence, the increased model complexity ensured 

success even in scenarios with high variability. 

Beyond the fact that real-world patches sometimes return better or worse harvests over time, 

they also sometimes replenish when not visited: apples grow back on trees, shelves are 

restocked in supermarkets, and so on. Animals have been observed to remember and leverage 

this kind of information when selecting patches (Merkle et al., 2014). As well, when provided 

with opportunities to re-visit patches from one trial to the next, human participants evaluate 

both global information related to average reward rate of the environment and local information 

related to patch-specific reward and repletion rates. In such cases, foragers obtain more reward 

by exploiting patches that replenish faster, which they learn about from prior experience. This 

behavior is well-represented by a model that includes estimates of both current reward value 

and reward replenishment rate for each alternative patch, in addition to the average reward 

value estimate of the environment (Hall-McMaster et al., 2021).  

As mentioned, large state/action spaces can present a computational challenge to model-based 

RL algorithms that simulate planned behaviors. Many RL implementations of foraging can be 

stymied by environments where the number of possible states and actions increases non-

linearly with the number of steps in a behavioral sequence (Zhang et al., 2015), and where 

environmental features such as patch richness can be heterogeneous and volatile. One way in 

which the dimensionality of the state space can be reduced is via artificial neural networks that 

are trained to generalize across similar states (Colin et al., 2023). For instance, Wu et al. (2020) 

reduce the dimensionality by assuming that the agent’s internal model is encoded within a low-

dimensional state manifold. They trained a recurrent neural network agent to solve a foraging 

task (Sugrue et al., 2004), which they used to estimate the likelihood of possible models of the 
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environment dynamics (i.e., the agent’s internal model) given the agent’s choices (Z. Wu et al., 

2020).  

In summary, although MB-RL provides flexibility that enables the agent to respond to 

unexpected changes in reward contingencies, the planning process is computationally 

expensive for large state spaces (Gershman, 2017). In practice, this results in long training 

times and slow simulation times that, in humans, demand neurocognitive resources associated 

with high cognitive effort (Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013). 

Foraging as a hierarchical task 

The computational demands of model-based planning in complex environments can be further 

ameliorated by breaking down the problem into smaller, hierarchically-organized components. 

Hierarchical reinforcement learning (HRL) can minimize the computational load associated 

with many MB-RL problems by grouping representations of states and actions according to 

their implicit hierarchical relationships (Barto & Mahadevan, 2003; Hutsebaut-Buysse et al., 

2022). In particular, a common implementation of HRL relies on the concept of options (Sutton 

et al., 1999), which are goal-directed action policies with specific initiation and termination 

states. Given that many behaviors naturally exhibit a hierarchical organization (Cooper & 

Shallice, 2000; Jeon, 2014; Lashley, 1951; G. A. Miller et al., 1960), the options framework 

can allow for decomposing temporally extended, complex behaviors into nested chains of 

action policies corresponding to tasks, options, and actions (Botvinick et al., 2009; Sutton et 

al., 1999). Doing so makes difficult learning problems more tractable by reducing the 

dimensionality of the problem space. In particular, grouping together low-level actions 

according to common subgoals, and in turn grouping these according to the main goal, reduces 

the size of the state spaces for learning and planning for each level of the hierarchy, thereby 

increasing the system’s computational efficiency (Botvinick et al., 2009).  
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Similar to its flat counterparts, HRL can be implemented using model-free (MF-HRL) or 

model-based (MB-HRL) approaches, or both. In these cases, the MF- or MB-RL computations 

are executed across every level of the hierarchy (Figure 2), allowing for decisions at different 

levels to be driven either by the cached value of options or by the inferred value of extended 

plans that simulate the execution of sequences of options (termed saltatory HRL) (Botvinick & 

Weinstein, 2014). Thus, MB-HRL can reduce the computational expense of planning in 

complex environments by simulating behavioral sequences at a high level of temporal 

abstraction, rather than by simulating the low level sequences of actions that comprise the 

policies. Importantly, MB-HRL can facilitate planning even in scenarios where the agent does 

not have access to a complete model of the environment (Pateria et al., 2022), as progress 

towards the goal can be simulated and monitored by the higher-levels even if the lower level 

policies are incomplete (Levy et al., 2017; Singh et al., 2004).  

The temporal and state abstractions associated with HRL mainly address value-based decision 

problems that are characterized by large state and action spaces (Eckstein & Collins, 2020). 

Specifically, as a complex value-based learning problem, foraging tasks can be simplified using 

abstract hierarchical representations of the planning space that map actions to options, thereby 

reducing the computational toll of model-based representations (Chalmers et al., 2016). A 

reasonable way to describe foraging problems according to principles of MB-HRL is by 

assuming that the agent’s primary goal is to maximize food intake, with each foraging patch 

(such as a forest) represented as a sub-option. In turn, each sub-option can be described as a set 

of contextually-related individual actions (like approaching a tree, grabbing a tree branch, 

pulling fruit, and so on) operating under a single option policy according to a common subgoal 

(such as picking fruit) (Figure 1). In contrast, with flat representations, all the actions and 

decisions operate under the same task policy and are given the same significance, such that the 

forager must learn to select actions and make decisions based solely on the current state (not 
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considering broader goals or subgoals). By utilizing hierarchical representations, rather than 

planning across each individual action, foraging agents can plan and predict harvests and patch-

switching decisions based on how profitable the current patch is relative to previously 

experienced, alternative patches. And based on the profitability of the current option (driven 

by the aggregate profit being earned from the option’s sub-options) relative to the overall profit 

from the entire foraging task, the highest level of the model can then direct switches between 

options (e.g., from fishing to picking fruit, and vice versa) as appropriate. 

Options can also optimize computational demands when existing subroutines can be adapted 

to novel situations with similar high-level contexts (Hengst, 2011). For instance, a forager 

trying to maximize the amount of food intake could collect apples using the fruit-picking 

policy. When encountering a pear tree, the fruit-picking policy can be reused and adapted to 

collect pears as well, as both activities fall within the domain of the high-level policy.  

In summary, because many foraging problems can be naturally decomposed into tasks with 

hierarchical structure, incorporating hierarchically-organized representations into existing 

foraging architectures can optimize computational resources by reducing the decision and 

planning space. Organized thusly, the higher levels can plan over and monitor progress toward 

the main goal at a relatively simple level of abstraction, and instigate strategy changes over 

subgoals according to the task demands. Hierarchy further provides modular 

compartmentalization that enables generalization across tasks and subtasks without 

interference between submodules (Colin et al., 2023; Holroyd & Verguts, 2021).  

Foraging and the anterior cingulate cortex 

The computational basis of foraging can be elucidated by understanding its underlying brain 

mechanisms. From this perspective, the ACC looms especially large. ACC activity has been 

observed ubiquitously in a wide variety of neuroimaging studies, which indicates that it 
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contributes to behavior more broadly than only foraging (Heilbronner & Hayden, 2016). For 

example, the ACC has been associated with conflict monitoring (Botvinick et al., 2001), error 

likelihood estimation (Brown & Braver, 2005), action selection (Holroyd & Coles, 2002), 

effort motivation (Holroyd & McClure, 2015), value estimation (Scholl et al., 2015), reward 

volatility estimation  (Behrens et al., 2007), effort avoidance (Botvinick, 2007), attention and 

surprise (Hayden, Heilbronner, et al., 2011), effort allocation (Verguts et al., 2015), decision 

costs evaluation (Croxson et al., 2009), and many other processes (Rushworth et al., 2011). As 

a consequence of this complexity, the function of ACC is highly disputed (Holroyd & Verguts, 

2021), but our limited understanding of ACC can still provide insight into its contribution to 

foraging. 

Multiple brain areas track changes in environmental- and decision-related variables during 

foraging (Bari et al., 2019; Cazettes et al., 2023; Rudebeck & Izquierdo, 2021; Shahidi et al., 

2019; Silston et al., 2021; Sugrue et al., 2004), but ACC is consistently observed to be engaged 

in foraging experiments (Pearson et al., 2014). Further, deactivating ACC seems to reliably 

impair foraging behavior (Kane et al., 2022; F. Li, Li, et al., 2012; Seamans et al., 1995; Tervo 

et al., 2021; Vertechi et al., 2020), indicating that ACC plays an essential role in foraging. In 

an early investigation of foraging neuroscience, Hayden, Pearson, et al. (2011) found that the 

firing rates of individual neurons recorded from the monkey ACC increased with each 

consecutive decision to stay in a patch, until the neural activity crossed a threshold that 

predicted when that patch would be abandoned in favor of an alternative. This patch-leaving 

threshold was modulated by the travel cost (the travel time from the current patch to the next), 

suggesting that ACC neurons might be sensitive to the value of the environment, namely the 

tradeoff between the costs and benefits for both the chosen and unchosen choices. Further, a 

study that used an accept/reject paradigm (i.e., accept the current offer or reject it to continue 

the search) found that firing rates of neurons in monkey ACC encoded the reward magnitude 
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of the non-selected choice, consistent with a role for the ACC in keeping track of environmental 

value for the adaptive adjustment of behavioral strategies (Blanchard & Hayden, 2014).  

A recent study examined the foraging behavior of mice in a task requiring switches between 

two different sites to obtain rewards (Vertechi et al., 2020). Optogenetic inactivation of ACC 

caused the mice to stay longer in a patch, evidently by altering the perceived value of the current 

patch against that of the environment (i.e., the alternative patch). Similarly, Tervo et al., (2021) 

proposed that switching to the alternative involves two different processes mediated by 

separate neural systems: a decision to leave the current patch and a subsequent decision to 

commit to the alternative. To test that hypothesis, they optogenetically manipulated ACC 

activity at two different times in rats performing a foraging task: on each trial when the animals 

were first presented with a choice between accepting or rejecting the current offer, and then 

following unrewarded feedback after a decision to accept (i.e., stay with the current offer). 

Whereas ACC perturbation during choice delayed switching to the alternative patch, ACC 

perturbation following unrewarded feedback increased the number of switches to the 

alternative (i.e., the opposite effect), which suggests that ACC might contribute differentially 

to foraging decisions. To test this speculation, they then perturbed two ACC output pathways—

ACC intra-telencephalic and pyramidal tract pathways—and showed that these opposing 

effects on switching were independently mediated by these two neural groups.  

Relatedly, a different neurophysiology study in rats found that individual ACC neuron activity 

correlated with foraging decision variables such as local (patch) and global (environment) 

reward rates, the value of leaving a patch, and decision difficulty (i.e., the similarity in the 

values of staying versus leaving a patch), whereas ACC activity averaged across neurons 

tracked the value of leaving a patch (Kane et al., 2022). When ACC was pharmacologically 

perturbed via a GABA receptor agonist, the animals tended to stay in the patches for more trials 

and their response times increased. The investigators attributed this effect to movement 
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slowness due to ACC inactivation, concluding that even though the ACC indeed encodes 

decision variables related to foraging, it plays a more general role in performance monitoring 

for the purpose of regulating response vigor (see also Niv et al., 2007).  

Neuroimaging studies with human participants have also been revealing. One fMRI study 

required human participants to track the reward value of patches in a dynamic environment 

where the patches had increasing or decreasing reward rates. Computational simulations based 

on RL principles revealed that the ACC BOLD response tracked trends in reward rates that in 

turn were associated with the observed foraging decisions (Wittmann et al., 2016). Moreover, 

ACC activity was sensitive to trends in both long- and short-term past rewards, which exhibited 

negative and positive influences, respectively, on decisions to remain in a patch. In another 

fMRI study, Kolling et al. (2012) observed that ACC activation correlated with the value of 

exploring the alternative choice, suggesting that the ACC encodes the value of the environment. 

Similar findings were reported in a study using sequential choices from multiple alternatives, 

where ACC activations were said to be encoding adaptive decisions away from the default 

choice (Boorman et al., 2013). In another human fMRI study, Shenhav et al. (2014) reported 

increased ACC activation when two alternatives have similar estimated values, making the 

choice between them more difficult. They argued that the human ACC encodes the difficulty 

of the choice. And in a follow-up study, Kolling et al. (2018) showed that ACC activity 

increased with increased value of the environment, and found that although choice difficulty 

also drove ACC activity, this occurred only late in the trial. The authors argued that the value 

of the environment activates ACC early in the trial, but when decisions are difficult, the choice 

takes longer and consequently ACC activity remains high for longer. The diverging 

interpretations between these two studies sparked a subsequent debate about whether ACC 

contributes to foraging by comparing the value of the current choice against the value of 

alternative choices available in the environment, or by evaluating the conflict between 
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especially difficult choices (Ebitz & Hayden, 2016; Kolling, Wittmann, et al., 2016; Shenhav 

et al., 2016).  

Foraging, ACC, and hierarchy 

We suggest that the incorporation of a hierarchical structure into RL models of foraging can 

improve our understanding of its underlying neuro-computational mechanisms. In line with a 

widely-discussed proposal that hierarchical representations are organized according to a rostro-

caudal gradient of abstraction along prefrontal cortex (Badre, 2008; Jeon, 2014; Koechlin et 

al., 2003; Koechlin & Summerfield, 2007; O’Reilly, 2010), including frontal midline cortex 

(Alexander & Brown, 2015; Taren et al., 2011), the representations underlying foraging may 

also be spatially distributed. In particular, one proposal based on principles of HRL holds that 

ACC adaptively selects and maintains task options (Holroyd & McClure, 2015; Holroyd & 

Verguts, 2021; Holroyd & Yeung, 2012). On this account, the most rostral areas of ACC 

(rACC) select and maintain high-level goals and options, anterior midcingulate cortex (aMCC, 

also called caudal or dorsal ACC) supports the execution of lower-level sub-options that 

implement the subgoals, and posterior midcingulate cortex (pMCC) and nearby cortical regions 

select the individual actions driven by the option-specific policies. Options and sub-options are 

selected via cortico-striatal feedback loops through the basal ganglia in accordance with 

changes in the average reward value at each hierarchical level. When the received reward is 

less than expected for that level, control increases over the immediately lower level in order to 

enhance task performance. When the received reward is equal or more than expected, control 

decreases over the immediately lower level, permitting that level to disengage gradually from 

task execution, thereby maximizing reward without mobilizing unnecessary effort.  

A hierarchical structure in combination with value-driven learning aligns naturally with the 

organization of foraging problems. This view holds that rACC implements and sustains the 
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highest-level goal in foraging (e.g., finding food). When the overall task value is less than 

predicted, control increases over the immediately lower level (i.e., the option level), motivating 

a switch of task strategy (e.g., from fishing to hunting) which is reflected in increased activation 

of rACC. Lower in the hierarchy, aMCC implements sub-options related to the individual task 

subgoals (such as selecting individual patches for fishing or hunting). Reduced option value 

(as occurs when a patch is exhausted) would cause aMCC to increase control over the 

immediately lower level (implemented by pMCC), which is reflected in increased activation 

of aMCC and persistent behavior (Figure 3). Crucially, this account predicts that the activations 

in aMCC and rACC are anti-correlated, with increased activation of the former associated with 

persistence on the present task and increased activation of the latter associated with switches 

between tasks.  

In addition, ACC appears to implement hierarchical control with model-based planning. In an 

MB-RL setting, the values associated with choices are assigned based on prospective 

simulations of the states and outcomes that such choices lead to. Converging with this idea, 

foraging-related studies highlight ACC as a candidate structure supporting model-based 

behavior. For example, a study with a two-step task in mice (option selection followed by 

action selection) found that ACC neurons encoded future states and reward transition 

probabilities, consistent with MB-RL, and that this trait was impaired after optogenetic 

manipulation of ACC (Akam et al., 2021). Further, a study in rats showed preferential and 

abrupt shifts in activations of neural populations within ACC depending on the animal’s 

exploratory or exploitative state (Caracheo et al., 2013), in line with the flexibility afforded by 

model-based planning. In a competitive foraging setting, neuron activity in rat ACC 

represented potential competitive effort, particularly when such effort leads to high rewards 

(Hillman & Bilkey, 2012); and individual neuron activity in mice ACC encoded resource 

availability and social information such as rank within the group, while the ensemble neuron 
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activity encoded history of rewards and prospective competitive success (S. W. Li et al., 2022). 

Both these accounts suggest a role for ACC related to a competition/benefit analysis when 

evaluating prospective courses of action. And still another study in monkeys showed that, 

whereas neuronal spiking activity in ACC reflected rewards and cost information, local field 

potentials from the same area reflected only reward signals (Ramakrishnan et al., 2019), 

suggesting that ACC might integrate various sources of contextual information related to a 

cost-benefit arbitration into a single prospective decision variable.  

These observations suggest that ACC represents states or task contexts (Rushworth et al., 2012) 

in order to facilitate planning (K. J. Miller & Venditto, 2021). In general, the complex response 

profiles observed in ACC are consistent with distributed coding of predictive world models 

(Kolling, Behrens, et al., 2016) across ACC neural ensembles (Shahnazian & Holroyd, 2018) 

that, in turn, appear to sub-serve hierarchically-organized, goal-directed action sequences 

(Holroyd et al., 2018). In particular, it has been argued that the control function of ACC may 

be especially important for persisting at the execution of high-level plans when the lower-level 

models are incomplete or unsuited for the task at hand (Holroyd & Verguts, 2021). 

This perspective speaks also to the debate on the role of ACC in foraging (Ebitz & Hayden, 

2016). Rodent studies have shown that disrupting the ACC tends to alter foraging decisions, 

and most importantly that the nature of these alterations depends on the location of the ACC 

manipulation. Consistent with its putative role in task switching, deactivation of rACC mainly 

leads to delayed switches to the alternative patch (Kane et al., 2022; Vertechi et al., 2020). And 

consistent with the proposal that aMCC supports the execution of lower-level sub-options that 

implement task subgoals, inactivation of a border area between cingulate and midcingulate 

cortices affects model updating while preserving direct action-reward associations (Akam et 

al., 2021), which suggests roles in model-based planning and option evaluation. Further, in line 

with the MB-HRL framework, which proposes distributed responsibilities in ACC for 
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regulating exploiting vs. switching between patches, ACC continuously estimates and tracks 

the values of the patch and of the environment (Hayden, Pearson, et al., 2011; Kolling et al., 

2012) in a spatially distributed and seemingly opposing manner (Tervo et al., 2021). Finally, 

the MB-HRL framework predicts the existence of hierarchically-organized control signals, 

such that conflict resulting from choices of comparable value is resolved by control signals 

applied by the immediately higher level, consistent with the choice difficulty explanation for 

foraging-related ACC activity (Shenhav et al., 2014). Needless to say, these cross-species 

generalizations should be interpreted with caution given controversy about homologs of human 

ACC in non-human animals (Cole et al., 2009; van Heukelum et al., 2020). 

In this review we have emphasized RL descriptions of foraging. It is important to remark that 

the distinction between model-based RL vs model-free RL is not actually a dichotomy and in 

fact masks numerous subtleties related to animal behavior (Collins & Cockburn, 2020). Rather 

than being characterized by one or the other, decision problems take a variety of  forms that 

align better with model-free representations, model-based representations, a combination of 

both, or entirely different algorithms such as latent-state inference (Harhen et al., 2021; Kumar 

et al., 2017), Bayesian inference (Harhen & Bornstein, 2023), and successor representations 

(Dayan, 1993; Gershman, 2018). However, we believe that the natural parallels of HRL with 

the hierarchical structure of foraging behavior and its neural implementation can provide 

exceptional insight into the phenomenon. 

Conclusions and prospective work 

Interest in foraging research has grown significantly in recent years. Foraging studies enable 

researchers to move beyond relatively controlled approaches for studying decision making 

(such as forced binary choices and go/no go paradigms) by providing ecologically valid 

experimental designs with complexity commensurate to the real-world problems that our brains 
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evolved to solve (Pretelli et al., 2022; Wise et al., 2023). At the same time, the use of a variety 

of computational models to explain foraging behavior is providing valuable new tools for 

theory development and testing. That said, exactly how foragers process information to make 

patch-leaving decisions, and how those decisions are computed in the brain, remains uncertain. 

Here we have highlighted important contributions of MF- and MB-RL foraging models, and 

have argued that the incorporation of hierarchically organized representations that regulate top-

down control can improve on these models even further. Moreover, these computations appear 

to be implemented by ACC, which integrates the advantages of model-based planning and 

hierarchically structured behavior to facilitate foraging according to principles of MB-HRL. 

Collectively, the neural studies and modelling approaches reviewed here provide insight into 

the computational processes underlying foraging behavior. 
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Figure 1. Patch-leaving decision criteria according to the MVT and RL models. MVT compares 

the return of the current patch to the global environment average return. MF-RL favors the 

choice (staying or leaving) with higher value. Model-based RL models use an internal model 

to predict long-term consequences of available choices, favoring the decision that maximizes 

the likelihood of reward maximization. Model-based models can describe foraging behavior 

more accurately but are more complex. A hierarchical organization can simplify these internal 

representations by modularizing the foraging task in hierarchical subcomponents. This in turn 

captures features of behavior better than its non-hierarchical analogs. MVT: Marginal Value 

Theorem; MF-RL: model-free reinforcement learning, MB-RL: model-based reinforcement 

learning; MB-HRL: model-based hierarchical reinforcement learning. 
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Figure 2. Feature comparison of MF-RL (blue connections) and MB-RL (green connections), 

for both flat and hierarchical versions. In flat RL there is no concept of sub-goal or secondary 

reward attainment. MF-RL caches reward values updated via RPEs in order to drive learning 

retrospectively, while flat MB-RL uses an internal model of the world to simulate possible 

paths and prospectively guide (plan) decisions. MF-HRL is supported by RPEs at different 

levels that drive learning of action values at the level of actions and policy values at the level 

of options (subgoals). MB-HRL leverages the advantages of options for goal-directed planning, 

which can serve well for complex, stochastic and/or non-stationary environments. 
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Figure 3. Foraging as a hierarchical task and its cingulate cortex correlates. Rostral ACC 

(rACC), including neighboring medial orbitofrontal cortex (mOFC) regions (green shade) 

implement high-level task goals and action schemas (such as find food) by selecting and 

maintaining high-level options (o1, o2, …, on, such as hunting, fishing, etc.). Anterior 

midcingulate cortex (aMCC; yellow shade) selects and maintains sub-options (p1, p2, … pm, such 

as patch 1, patch 2, etc.) that accomplish less abstract lower-level sub-goals, and posterior 

midcingulate cortex (pMCC) including neighboring pre-supplementary motor cortex (pre-

SMA) areas (red shade) regulate the individual low-level action sequences driven by option-

specific policies. At any given time, the ACC selects or maintains an option (green arrow), 

which itself selects or maintains engagement with a patch (brown arrow), which in turn invokes 

a harvesting-related action policy (red arrow). When the rewards received in a patch are worse 

than expected, the option level increases control over the patch level, eventually driving a 

switch to a different patch (despite travelling costs) such as from one tree to another. When the 

rewards received across the entire task are worse than expected, the task level increases control 

over the option level, eventually driving a switch to a different option (despite the travelling 

costs) such as from hunting to fishing. Control is then released when the received outcomes (at 

each level) are better than expected. See van Heukelum et al. (2020) for anatomical definitions; 

for clarity, we reserve the terms ACC for the entire region described (rACC, aMCC, pMCC), 

and rACC for what Heukelum et al (2020) call ACC. Created with BioRender. 
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Highlights 

• Foraging behavior can be difficult to explain in complex stochastic environments. 

• The role of the anterior cingulate cortex during foraging is uncertain and disputed. 

• Model-free RL approaches neglect the use of environmental information that animals 

seem to leverage. 

• Model-based RL approaches are limited by the processing demands of online planning 

during foraging. 

• The hierarchical structure of foraging problems and a hierarchical reinforcement 

learning mechanism implemented by ACC can provide insight into the neural 

computations responsible for foraging behavior. 
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